中国循证儿科杂志 ›› 2025, Vol. 20 ›› Issue (2): 110-116.DOI: 10.3969/j.issn.1673-5501.2025.02.005

• 论著 • 上一篇    下一篇

非海平面地区使用脉搏血氧饱和度筛查新生儿先天性心脏病的系统评价和Meta分析

董瑶瑶1a,2,7,贾品1b,3,7,田友平3,裘梦凡1a,2,万凡1a,2,夏倩文1a,2,王源4,胡晓静1c,3,6,黄国英3,5,6   

  1. 1 复旦大学附属儿科医院 上海,201102,a 新生儿科,b 科研部,c 护理部;2 复旦大学护理学院上海,200032;3 新生儿先心病筛查国家级项目管理办公室 上海,201102;4 浙江大学医学院附属第一医院 杭州,310000;5 上海市出生缺陷防治重点实验室 上海,201102;6 中国医学科学院小儿遗传相关心血管疾病早期防控创新单元 北京,100730;7 共同第一作者
  • 收稿日期:2024-09-16 修回日期:2025-03-06 出版日期:2025-04-25 发布日期:2025-04-25
  • 通讯作者: 胡晓静;黄国英

Screening for neonatal congenital heart disease using pulse oximetry in non-sea level areas: A systematic review and meta-analysis

DONG Yaoyao1a,2,7, JIA Pin1b,3,7, TIAN Youping3, QIU Mengfan1a,2, WAN Fan1a,2, XIA Qianwen1a,2, WANG Yuan4, HU Xiaojing1c,3,6, HUANG Guoying3,5,6   

  1. 1 Children's Hospital of Fudan University, Shanghai 201102, China, a Department of Neonatology, b Office of Scientific Research, c Department of Nursing; 2 School of Nursing, Fudan University, Shanghai 200032, China; 3 National Project Management Office of Neonatal Congenital Heart Disease Screening, Shanghai 201102, China; 4 The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; 5 Shanghai Key Laboratory for Prevention and Control of Birth Defects, Shanghai 201102, China; 6 Early Prevention and Control of Paediatric Genetically Related Cardiovascular Diseases Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100730, China;  7 Co-first author
  • Received:2024-09-16 Revised:2025-03-06 Online:2025-04-25 Published:2025-04-25
  • Contact: HU Xiaojing; HUANG Guoying

摘要: 背景:目前新生儿先天性心脏病(CHD)使用的脉搏血氧饱和度(POX)的筛查阈值绝大部分针对海平面地区,有研究者尝试建立非海平面地区(海拔>200 m)SpO2的正常值范围,一些国家也采取不同的POX筛查方案进行探索性研究。 目的:汇总非海平面地区使用POX筛查新生儿CHD的不同筛查方案的筛查效果。 设计:系统评价和Meta分析。 方法:检索Embase via Ovid、PubMed、The Cochrane Library、Web of Science、SinoMed、中国知网、万方数据库,检索时间限定为建库至2024年11月18日。阅读标题和摘要初筛,阅读全文复筛。纳入在特定海拔地区(至少包括1个非海平面地区)进行的,研究对象为新生儿,采用POX筛查或POX结合其他方法筛查CHD,文中描述了具体筛查方案的文献。排除重复发表或无法获取全文,或文献类型为传统综述、会议等,或无诊断CHD的金标准,或无法提取诊断准确性参数或四格表数据的文献。提取纳入文献的基本情况、筛查信息和诊断参数等。采用QUADAS-2评价工具对纳入文献进行偏倚风险评价。采用R 4.4.0软件进行Meta分析。 主要结局指标:POX筛查非海平面地区新生儿CHD的诊断参数。 结果:纳入7项诊断准确性研究。样本量199~6 109例。低质量文献1篇、中等质量文献4篇、高质量文献2篇。3项单中心研究,为非海平面地区,海拔806~3 380 m;4篇多中心研究,包含海平面地区和非海平面地区,海拔≤610 m~4 338 m。使用美国儿科学会规定的筛查方案(AAP筛查方案亚组)4篇,在AAP筛查方案的基础上调整SpO2阈值或结合其他筛查手段(调整方案亚组)3篇。①非海平面地区AAP筛查方案亚组(2项研究,海拔分别为806 m和1 646 m)Meta分析结果显示:敏感度66%(95%CI:14%~96%),特异度97%(95%CI:97%~98%),假阳性率3%(95%CI:2%~3%),AUC 0.79(95%CI:0.55~1.00);调整方案亚组(1项研究,海拔3 380 m)Meta分析结果显示:敏感度74%(95%CI:65%~81%),特异度81%(95%CI:78%~84%),假阳性率19%(95%CI:16%~22%), AUC 77.4(95%CI:0.732~0.816)。②非海平面地区+海平面地区AAP筛查方案亚组(1项研究,海拔100~1 900 m)Meta分析结果显示:筛查敏感度79%(95%CI:38%~96%),特异度99%(95%CI:99%~99%),假阳性率1%(95%CI:1%~1%),AUC 0.871(95%CI:0.711~1.00);调整方案亚组(2项研究,海拔≤610~4 338 m)Meta分析结果显示:敏感度61%(95%CI: 41%~79%),特异度96%(95%CI: 96%~97%),假阳性率4%(95%CI: 0~31%), AUC 0.80(95%CI:0.71~0.89)。1项研究未纳入Meta分析,通过概率图和95%CI的预测回归线显示,若使用AAP筛查方案,可能会导致海拔780 m处比海平面地区多出3.5倍的假阳性筛查结果。 结论:在海平面或低海拔地区使用AAP筛查方案效果可能更好,非海平面或海拔较高地区使用调整阈值后的筛查方案效果可能更好,但具体根据海拔高低如何制定筛查阈值有待进一步研究确定。

关键词: 新生儿, 先天性心脏病, 脉搏血氧饱和度, 筛查, 海拔

Abstract: Background:The screening thresholds of pulse oximetry screening (POX), which is currently mostly used in neonatal congenital heart disease (CHD), are overwhelmingly specific to the sea level region. Currently, some researchers have attempted to establish a range of normal values for SpO2 in non-sea-level areas (>200 m above sea level), and exploratory studies have been conducted in a number of countries with different POX screening protocols. Objective:To pool the screening effects of different screening protocols for neonatal CHD using POX in non-sea-level areas. Design:Systematic evaluation and meta-analysis. Methods:Embase via Ovid, PubMed, The Cochrane Library, Web of Science, SinoMed, China National Knowledge Infrastructure(CNKI), and Wanfang databases were searched, and the search was limited to the period of time between the creation of the database and 18 November 2024. The titles and abstracts were read for initial screening and the full text was read for re-screening. Included studies were neonates screened for CHD by POX screening or POX combined with other methods, specific screening protocols were described in the text, and studies were conducted in the literature at specific altitudes (including at least 1 non-sea level area). Literature that was duplicated or for which full text was not available, or for which the type of literature was a traditional review, conference, etc, or for which there was no gold standard for the diagnosis of CHD, or for which no diagnostic accuracy parameters or four-compartmental table data could be extracted, was excluded. Basic information, screening information and diagnostic parameters of the included literature were extracted. The QUADAS-2 evaluation tool was used to evaluate the risk of bias of the included literature. Meta-analysis was performed using R 4.4.0 software. Main outcome measures:Diagnostic parameters of POX screening for neonatal CHD in non-sea-level areas. Results:Seven diagnostic accuracy studies were included. Sample size 199-6,109 cases. One low quality, four medium quality, and two high quality studies. three single-centre studies, non-sea level areas, elevations 806-3,380 m, and four multi-centre studies, including sea level areas and non-sea level areas, elevations 0m to 4,338 m. Four studies using the AAP screening protocol (subgroup of the AAP screening protocol), with adjustments of SpO2 thresholds on top of AAP screening protocols or combined with other screening tools (Adjustment Programme subgroup) 3 articles. ① Meta-analysis of the AAP screening programme subgroup in non-sea level areas (2 studies, 806 m and 1,646 m above sea level) showed a sensitivity of 66% (95%CI: 14%-96%), a specificity of 97% (95%CI: 97%-98%), a false-positive rate of 3% (95%CI: 2%-3%), an AUC of 0.79 (95%CI: 0.55-1.00); Meta-analysis of the adjusted protocol screening subgroup (1 study, 3,380 m above sea level) showed a sensitivity of 74% (95%CI: 65%-81%), a specificity of 81% (95%CI: 78%-84%), a false-positive rate of 19% (95%CI: 16%-22%), an AUC 0.774 (95%CI: 0.732-0.816). ② Meta-analysis of the subgroup of the AAP screening programme in non-sea-level areas + sea-level areas (1 study, 100 to 1 900 m above sea level) showed a screening sensitivity of 79% (95%CI: 38%-96%), a specificity of 99% (95%CI: 99%-99%), a false-positive rate of 1% (95%CI: 1%-1%), an AUC 0.871 (95%CI: 0.711-1.00); Meta-analysis of the adjusted protocol screening subgroup (2 studies, elevation ≤610-4,338 m) showed a sensitivity of 61% (95%CI: 41%-79%), a specificity of 96% (95%CI: 96%-97%), a false-positive rate of 4% (95%CI: 0-31%), and AUC 0.80 (95%CI: 0.71-0.89). One study was not included in the meta-analysis, and the predictive regression line with probability plots and 95%CIs showed that applying the AAP screening protocol could potentially yield 3.5 times more false-positive results at 780 m altitude compared to sea-level regions. Conclusion:The results of using the AAP screening programme may be better in sea level or low altitude areas, and the results of using the screening programme with adjusted thresholds may be better in non-sea level or higher altitude areas, but how to set the screening thresholds according to the altitude needs to be determined by further research.

Key words: Neonate, Congenital heart disease (CHD), Pulse oximetry, Screening, Altitude