中国循证儿科杂志 ›› 2019, Vol. 14 ›› Issue (2): 129-133.DOI: 10.3969/j.issn.1673-5501.2019.02.010

• 论著 • 上一篇    下一篇

基于SAS NLMIXED的广义线性混合效应模型在发病率数据Meta分析中的应用

郑建清1, 黄碧芬2, 吴敏1, 肖丽华1   

  1. 1 福建医科大学附属第二医院放射治疗科 泉州,362000;
    2 福建泉州医学高等专科学校附属人民医院妇产科 泉州,362000
  • 收稿日期:2019-02-26 出版日期:2019-04-25 发布日期:2019-04-25
  • 通讯作者: 黄碧芬, E-mail: yellowbf@163.com
  • 基金资助:
    福建医科大学附属第二医院苗圃基金:2017MP04

The application of the generalized linear mixed model based on SAS NLMIXED in the meta-analysis of incidence rate data

ZHENG Jian-qing1, HUANG Bi-fen2, WU Min1, XIAO Li-hua1   

  1. 1 Department of Radiotherapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
    2 Department of Obstetrics and Gynecology, People's Hospital Affiliated to Quanzhou Medical College, Quanzhou 362000, China
  • Received:2019-02-26 Online:2019-04-25 Published:2019-04-25
  • Contact: HUANG Bi-fen, E-mail: yellowbf@163.com

摘要: 目的 介绍利用SAS软件中的PROC NLMIXED过程步实现发病率数据的META分析方法。方法 基于广义线性混合效应模型(GLMM)的二项式-正态模型(BN)和泊松-正态模型(PNM)等,可方便地实现发病率数据的随机效应Meta分析,尤其当Meta分析纳入含0事件研究时。以Schutz等发表的血管内皮生长因子受体酪氨酸激酶抑制剂治疗的癌症患者发生致命不良事件风险的系统评价作为实例数据,利用SAS软件实现发病率数据的META分析,并提供编程代码。结果 对于含0事件研究,使用PNM模型进行Meta分析,无需进行连续校正法。删除0事件研究对于PNM模型影响较大。与标准正态模型相比,PNM和BNM模型给出的效应值更高,而P值则更小,具有更好的灵敏性。结论 基于广义线性混合效应模型,利用SAS的PROC NLMIXED实现发病率数据Meta分析是优选的方法。

关键词: 泊松-正态模型, 二项式-正态模型, 发病率数据, 广义线性混合效应模型, 正态-正态模型

Abstract: Objective To introduce the meta-analysis method for the incidence data using the PROC NLMIXED program in SAS software.Methods A Binomial-Normal model (BNM) or Poisson-Normal model (PNM) based on the generalized linear mixed model (GLMM) was proposed by Stijnen et al., which was extremely convenient to achieve a random-effect meta-analysis of incidence data, especially when the meta-analysis incorporated zero-event studies. A systematic review of the risk of fatal adverse events in cancer patients treated with vascular endothelial growth factor receptor tyrosine kinase inhibitors published by Schutz et al. was used as an example data, and meta-analysis of the incidence data was performed using SAS software and programming code was provided.Results For the zero-event study, the PNM model could be used for meta-analysis without continuity correction. The deletion of the zero-event study could have a greater impact on the PNM model. Compared with the standard normal model, the PNM model or BNM model gave higher effect values, while the P values were smaller, resulting in better sensitivity.Conclusion Based on the generalized linear mixed-effects model, using the PROC NLMIXED in SAS to achieve the meta-analysis of incidence data is the preferred method.

Key words: Binomial-normal model, Generalized linear mixed-effects model, Incidence rate data, Normal-normal model, Poisson-normal model